If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1r^2-7=0
We add all the numbers together, and all the variables
r^2-7=0
a = 1; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·1·(-7)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7}}{2*1}=\frac{0-2\sqrt{7}}{2} =-\frac{2\sqrt{7}}{2} =-\sqrt{7} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7}}{2*1}=\frac{0+2\sqrt{7}}{2} =\frac{2\sqrt{7}}{2} =\sqrt{7} $
| 8r^2-5r+5=2r+7r^2+5 | | 2+x=5+10/12x | | 2+x=5+10x | | v^2+2v-18=5v | | (7-5x)=(6x-24) | | -9.8x^2+12x=4.4 | | 9.8x^2-12x+4.4=0 | | (6x-25)=(7-5x) | | X2-55x+750=0 | | (6x-16)=(7-7x) | | (14x-8)=(4-5x) | | 5g-9=-44 | | (12x+54)=(35x-25) | | 5(8x-4)=300 | | 5(8x-4=300 | | (42x+7)=(27x+9) | | (25x-30)=(6x+27) | | (21x-14)=(7x+1) | | t/2.6=4.4 | | 7-x9x=-3 | | 7-x9=-3 | | 10+2a=1+5a | | 1x-2=x+4 | | 5x-7+8x=19-2 | | (27x+54)=(9x-3) | | 4·1.6=f | | (28x+28)=(3x-9) | | (7x+8)=(18x+2) | | (9x-2)=10x-19( | | 15xX=X | | 4z/10-4=-7 | | -1(-1y+3)=4 |